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Abstract

This paper presents an insight into the pattern of change in instantaneous eigenproperties of a building as a result of

reduction in tangent stiffness due to yielding of different members of the building. Using a perturbation approach, it is

found that for a shear building, a reduction in instantaneous stiffness due to a yielding occurring in the bottom story will

cause a greater absolute percentage change in eigenvalues (squared frequencies) of a lower mode than that of a higher

mode. In contrast, for a reduction in instantaneous stiffness due to a yielding occurring in the top story, this absolute

percentage change in the eigenvalues increases with a increase in mode number starting from the fundamental mode.

A numerical study with a four-story shear building and a four-story and an eight-story steel moment-resisting frame

models representative of existing buildings demonstrates that the trends in change in eigenproperties obtained from the

analytical study works well for these buildings. The findings of this study may be utilized to improve the design practices of

buildings as well as non-structural components attached to buildings.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

It is well known that in current practice of performance-based design, in order to dissipate vibrational
energy through inelastic deformations and reduce force demands, structures are designed to go into their
nonlinear range of behavior when subjected to a strong earthquake excitation. Thus, during a strong
earthquake excitation, a structure goes into its nonlinear range of behavior from its initial pre-yield linear
behavior and comes back to linear behavior again. The cycle continues following a hysteretic constitutive
relationship, while keeping an acceptable level of performance of the structure. As the structure goes into its
nonlinear range of behavior from its initial linear range due to yielding of one or more of its structural
elements, its instantaneous stiffness (tangent stiffness) reduces from its initial linear stiffness, and in
consequence, its instantaneous eigenproperties change from its initial eigenproperties. This change in
eigenproperties due to a reduction in stiffness results in redistribution of vibrational energy among the
instantaneous modes, which plays a major role in governing where the next yield will occur, and therefore
plays a critical role in defining the seismic response of a structure. In this paper, by ‘yielding’ the author
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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implies reduction in instantaneous stiffness of a member due to nonlinear behavior of that member or
formation of plastic hinge.

When a structure undergoes nonlinear deformation, the response of a stiff non-structural component
(e.g., chiller, parapet, control panel, electrical, and mechanical equipment) attached to the yielding structure
increases when compared with the case where the non-structural component is attached to the same structure
but idealized as a linear system and undergoing the same seismic excitation. This increase in response, which
was found through linear and nonlinear time-history analyses [1–3], can be explained by the aforementioned
redistribution of vibrational energy among modes [4]. A better understanding of this energy redistribution
mechanism of a yielding structure, when subjected to strong earthquake excitation, can be used in a response
spectrum-based approach to develop better approximate methods for seismic response analysis of non-
structural components attached to the structure. In addition, a good understanding of energy redistribution
among instantaneous modes and associated energy loss can be used to scrutinize current seismic design
philosophy of a yielding structure and may provide a better seismic design practice of the present-day
structures. It is noteworthy that which member will yield first and suffer nonlinear deformation (i.e., whether a
member situated at the top story of a building, or at the bottom story of the building, or situated at somewhere
in between will yield first), when subjected to a strong earthquake excitation, depends on the characteristics of
the ground excitation, distributions of relative rigidity of members and mass distribution along the height of a
structure. An assessment in the change in eigenproperties related to where the first yield occurs within a
structure is therefore necessary.

1.1. Previous research

Significant research has been taken place to characterize eigenproperties of many complex systems and their
constituting elements. Perhaps to mechanical, aeronautical, and structural engineers, most studied structural
element is a beam, which is often modeled to idealize a building, its foundation, and also some other
mechanical and aeronautical structures and components. The fundamental vibration behavior of various types
of short, long, slender, prismatic and non-uniform beams has been investigated using the theories of classical
shear, Euler–Bernoulli and Timoshenko beams. Typically studied area is the determination of eigenproperties
of beams considering the effect of shear and/or flexural deformations, rotational inertia, boundary conditions,
and axial or in-plane loading. A comprehensive summary of these studies can be found in Bokaian [5] and
Esmailzadeh and Ohadi [6].

A non-uniform beam in which the cross-section is varying along the length of the beam is widely conceived
as a simple model of many real-world structures. Significant development has occurred to address the
vibration behaviors of a non-uniform beam with different support conditions, i.e., clamped supported,
elastically supported, free end and pinned end. Some of these works when listed chronologically are as follows:
Mabi and Rogers [7] studied the transverse vibration of double-tapered cantilever beams; Irie et al. [8] studied
the steady-state response of a Timoshenko beam with varying cross-section to harmonic point load; Rossi et
al. [9] obtained the natural frequencies of a cantilever Timoshenko beam with tip mass for both discontinuous
and linear variation of cross-section; Jategaonkar and Chehil [10] gave the natural frequencies of a beam with
varying cross-section; Gutierrez et al. [11] studied the vibration of elastically clamped Timoshenko beam;
Lee et al. [12] studied the vibration of non-uniform beams subjected to variably distributed axial loads;
Esmailzadeh and Ohadi [6] studied the vibration of non-uniform Timoshenko beam subjected to different
loading conditions. For discontinuous variation of thickness, the vibration behaviors were finally obtained by
numerical solutions. For the cases where the cross section varies smoothly (i.e., varying linearly or in some
functional form), solutions are expressed using Bessel’s functions or the method of Frobenius is used (e.g., Lee
and Kuo [13,14], and Lee and Lin [15]). Numerical techniques including finite element analysis and Galerkin’s
approach have also been widely used to characterize eigenfrequencies of systems with non-uniform stiffness
distribution.

Since the presence of cracks in a beam modifies its eigenfrequencies, researchers have tried to identify cracks
in a beam by measuring the eigenfrequencies with the aid of ultrasonic fatigue test and comparing the test
results with the computed one. Gudmundson [16] used the first-order approximation of perturbation approach
to determine the effect of size and position of a crack on eigenfrequencies. Further, using transverse vibration
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of cantilever Bernoulli–Euler beams, he found that the results of the first four resonance frequencies match
well with the experimental results for a crack less than 40% of the width of the beam. He also used the
longitudinal vibration of a beam to compare his results with those obtained from a finite element analysis. This
study was conducted to predict the eigenfrequencies of a cracked beam. Several other researchers have also
studied cracks of joints and edge-cracked beam. Later, Gudmundson [17] used flexibility matrix to represent
the cracks. Zheng and Fan [18] studied a non-uniform beam with an arbitrary number of open cracks using
modified Fourier series in association with the finite element method. Stetson [19] used perturbation approach
to find the change in eigenproperties due to a small change in mass and stiffness of a beam. Later the same
technique has been used to formulate the inverse problem, i.e., what change is necessary for mass and stiffness
properties of members in design in order to achieve a desired change in eigenfrequencies [20,21].

1.2. Scope of this work

In this paper, an approximate closed form relationship between the initial linear (pre-yield) and the
instantaneous eigenproperties of a yielding structure after yielding occurred is established by means of a well-
known perturbation approach. A uniform two-term expansion is considered for the perturbation approach to
show the relative strength of these terms. Although during a strong earthquake excitation, the members of a
structure yield one by one and consequently the eigenproperties of the structure change, in this study, the
change in stiffness between the initial linear range (pre-yield) and when the structure is in its nonlinear zone of
behavior is considered. Then approximating the vibration characteristics of a building structure as that of an
equivalent shear beam, closed form expressions are obtained to get an insight into the change in instantaneous
eigenproperties for different patterns of yielding, i.e., where within a building, the first yielding occurs or
plastic hinge forms. In particular, the focus is placed on understanding the pattern of change in eigenvalues
and coupling matrix of initial linear to post-yield eigenvectors with respect to the mass matrix. A numerical
study considering a four-story shear building and two steel moment-resisting frames, one four-story and the
other eight-story, has been conducted to investigate the applicability of the proposed theory.

2. Perturbation formulation

Consider a n degree-of-freedom (dof) lumped mass model representing a typical building structure. Let ½m�,
½k� and ½k̂�, respectively, denote the mass matrix, the initial stiffness matrix, and the post-yield instantaneous
stiffness (tangent stiffness) matrix of the structure, where ½k̂� � ½k� ¼ ½Dk� implies the change in stiffness matrix
of the structure when it goes into its nonlinear range from its linear range of behavior. Therefore, the
instantaneous eigenproperties of the structure in the nonlinear range can be obtained from the following
equation:

½m�f €xðtÞg þ ½k̂�fxðtÞg ¼ f0g. (1)

Let us consider the coordinate transformation

fxðtÞg ¼ ½f�fqðtÞg, (2)

where ½f� is the modal matrix of the linear system obtained by considering n orthonormal modes. In view of
this transformation and pre-multiplying by ½f�T, Eq. (1) becomes

½I �f €qðtÞg þ ½½l� þ ½f�T½Dk�½f��fqðtÞg ¼ f0g, (3)

where ½l� is a diagonal matrix with the diagonal elements representing the squares of the frequencies
(eigenvalues) of the linear structure. Eq. (3) leads to the eigenvalue problem in normal coordinates as given
below

½½l� þ ½f�T½Dk�½f��fĉðjÞg ¼ l̂jfĉ
ðjÞ
g, (4)

where l̂j and fĉ
ðjÞ
g, respectively, denote the square of the jth natural frequency and the jth orthonormal mode

shape of the structure in the nonlinear range.
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Let us consider that the change in stiffness due to yielding is very small or, in other words, that the order of
each term of ½Dk� is very small compared to the corresponding term of ½k�. Therefore, assuming different
orders of magnitudes of the elements of ½½l� þ ½f�T½Dk�½f��, one can express it as

½½l� þ ½f�T½Dk�½f�� ¼ ½A0� þ ½A1�, (5)

with ½A0� ¼ ½l� and ½A1� ¼ ½f�T½Dk�½f�.
Now, introducing a ‘book-keeping parameter’, �, to keep track of the orders of the different quantities

involved in the eigenvalue problem, Eq. (4) may be expressed as

½½A0� þ �½A1��fĉ
ðjÞ
g ¼ l̂jfĉ

ðjÞ
g, (6)

with � ¼ 1. It may be noted that the equations obtained by setting � ¼ 0 in Eq. (6) represent the unperturbed
eigenvalue problem, which can be solved using the initial (linear) system properties. Considering a

straightforward perturbation expansion for the approximate solutions of l̂j and ĉðjÞ, one can write

v̂j ¼
XN

i¼0

�ivij þOð�Nþ1Þ, (7)

where v̂j takes the value of either l̂j or ĉðjÞ. Here, OðÞ represents the order of magnitude of a quantity and

the expansion is said to be valid up to Oð�N Þ, with an error of Oð�Nþ1Þ. Considering an expansion uniformly
valid up to Oð�Þ (setting N ¼ 1 in Eq. (7)), the perturbed (post-yield) eigenvalues and eigenvectors may be
expressed as

l̂i ¼ l0i þ �l1i; i ¼ 1; 2; . . . ; n (8)

and

fĉðiÞg ¼ fu0ig þ �fu1ig; i ¼ 1; 2; . . . ; n, (9)

where l0i and fu0ig are of Oð�0Þ; l1i and fu1ig are of Oð�Þ. The assumed expansion in Eqs. (8) and (9) will satisfy
the following orthogonality condition:

fĉðiÞgTfĉðjÞg ¼ dij ; i; j ¼ 1; 2; 3; . . . ; n, (10)

where dij is the Kronecker delta.

On substituting the above expansions of l̂i and fĉ
ðiÞ
g in Eq. (6) and equating the coefficients of equal powers

of � up to Oð�Þ, the following hierarchy of equations is obtained:
Order �0:

½A0�fu0ig ¼ l0ifu0ig, (11)

Order �1:

½A0�fu1ig þ ½A1�fu0ig ¼ l0ifu1ig þ l1ifu0ig, (12)

where i ¼ 1; 2; . . . ; n. Similarly, on utilizing the orthogonality condition given by Eq. (10) and considering
terms up to Oð�Þ, the following hierarchy of equations is obtained:

Order �0:

fu0jg
Tfu0ig ¼ dij, (13)

Order �1:

fu0jg
Tfu1ig þ fu1jg

Tfu0ig ¼ 0, (14)

where i; j ¼ 1; 2; . . . ; n.
Since ½A0� is a diagonal matrix with its ith diagonal element representing the square of the linear system

frequency li, from Eqs. (11) and (13), we can observe that l0i and fu0ig are the ith eigenvalue and eigenvector
of the linear system in normal coordinates, i.e., l0i ¼ li and fu0ig is a vector with its ith element equal to unity
and all other elements equal to zero.
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Now, by expanding fu1ig in terms of base vectors fu0jg, j ¼ 1; 2; . . . ; n (see Meirovitch and Ryland [22]), i.e.,

fu1ig ¼
Xn

j¼1

aijfu0jg (15)

and utilizing Eqs. (11)–(14), the coefficients of expansions aij in Eq. (15) and correction terms l1i in Eq. (8) can
be determined. Accordingly, on substituting in Eq. (12) the expansion of fu1ig, given by Eq. (15), pre-
multiplying by fu0jg

T, and on using Eq. (13), the following equation is obtained:

l1idij ¼ ðl0j � l0iÞaij þ fu0jg
T½A1�fu0ig; i; j ¼ 1; 2; . . . ; n. (16)

This equation further leads to

l1i ¼ fu0ig
T½A1�fu0ig ¼ A1ði; iÞ; i ¼ 1; 2; . . . ; n (17)

and

aij ¼
fu0jg

T½A1�fu0ig

l0i � l0j

¼
A1ðj; iÞ

l0i � l0j

; iaj; i; j ¼ 1; 2; . . . ; n, (18)

where A1ðj; iÞ denotes the element corresponding to jth row and ith column of ½A1�.
On substituting Eq. (15) in Eq. (14) and after simplifying, one can obtain aii ¼ 0 and aij ¼ �aji for i; j ¼

1; 2; . . . ; n and thus, fu1ig becomes

fu1ig ¼
Xn

j¼1; jai

A1ðj; iÞ

li � lj

fu0jg; i; j ¼ 1; 2; . . . ; n. (19)

Finally, the results of the above derivation can be summarized as

l̂i ¼ li þ A1ði; iÞ; i ¼ 1; 2; . . . ; n (20)

and

ĉðiÞi ¼ 1:0; ĉðiÞj ¼ �
A1ðj; iÞ

li � lj

; iaj ¼ 1; 2; . . . ; n (21)

as fu0ig is a vector with its ith element equal to unity and all other elements equal to zero. The perturbed ith
eigenvector (i.e., ith mode shape) in general coordinates becomes

ff̂
ðiÞ
g ¼ ½f�fĉðiÞg. (22)

Pre-multiplying both sides of Eq. (22) by ½f�T½m�, one can write

½ĉ� ¼ ½f�T½m�½f̂�, (23)

which implies that ½ĉ� is essentially a coupling matrix between pre-yield and post-yield modal matrices with
respect to the mass matrix.
3. Vibration of shear building

Let us consider a n-dof shear building as shown in Fig. 1. Let ki, yi and mi be its ith story stiffness, the height
of its ith story from its base and the mass of its ith floor, respectively, where i ¼ 1; 2; . . . ; n. Let us also consider
that n is large and the eigenproperties of the building can be approximated as that of an equivalent uniform
cantilever shear beam of length L. Thus the ith frequency of the building, oi and the jth component of the ith
orthonormal mode shape of the building, fðiÞj can be approximated as follows:

oi ¼ ð2i � 1Þ
pc

2L
(24)
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Fig. 1. Schematic diagram of a n degree-of-freedom shear building.
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and

fðiÞj ¼ b sinð2i � 1Þ
pyj

2L
, (25)

where i; j ¼ 1; 2; . . . ; n, c is the shear wave velocity of the equivalent shear beam and b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðrLÞ

p
, r being the

mass per unit length of the equivalent shear beam. Note that this assumption of eigenproperties of a lumped
mass model in terms of the eigenproperties of a uniform shear beam has been proven to be reasonable for
lower modes. Based on these assumptions, the results obtained from the perturbation formulation, can be
interpreted for the following three cases.

3.1. Case 1: yielding of a member of the bottom story

Let us assume that yielding occurs in a member of the bottom story. This case may represent the scenario
of yielding of the shear wall structures or even some frame structures during a strong earthquake. Let
the reduction in stiffness of this member due to yielding be dk1, where 0odo1. Hence, only the (1,1)th
element of ½Dk� is �dk1 and all other elements are equal to zero. Therefore, one can express A1ði; jÞ ¼
�fðjÞ1 fðiÞ1 dk1 and l̂i as

l̂i ¼ li 1� ðfðiÞ1 Þ
2 dk1

li

� �
; i ¼ 1; 2; . . . ; n. (26)

Let ei represents the change in ith eigenvalue (square of the ith frequency) due to the reduction in
stiffness resulting from the yielding and normalized with respect to li, i.e., ei ¼ ðl̂i � liÞ=li. Therefore,
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one can write

ei ¼ �ðf
ðiÞ
1 Þ

2 dk1

li

; i ¼ 1; 2; . . . ; n. (27)

Now, replacing fðiÞ1 with b sinð2i � 1Þpy1=2L, and substituting ½ð2i � 1Þpc=2L�2 for li, one can write

ei ¼ �
½b sinðð2i � 1Þpy1=2LÞ�2dk1

½ð2i � 1Þpc=2L�2
; i ¼ 1; 2; . . . ; n. (28)

Simplifying above expression as

ei ¼ �
½1� cosðð2i � 1Þpy1=LÞ�b2dk1

2½ð2i � 1Þpc=2L�2
; i ¼ 1; 2; . . . ; n, (29)

assuming y1! 0 due to large value of n, expanding cosðð2i � 1Þpy1=LÞ in cosine series for i not being too
large, and neglecting higher order terms, Eq. (29) can be written as

ei ¼ � 1� ð2i � 1Þ2
p2

12

y2
1

L2

� �
y2
1

c2
b2dk1; i ¼ 1; 2; . . . ; n. (30)

Similarly, for i; j ¼ 1; 2; . . . ; n and iaj, ĉðiÞj can be expressed as

ĉðiÞj ¼ �
fðjÞ1 fðiÞ1 dk1

li � lj

¼ �
b2 sinðð2j � 1Þpy1=2LÞ sinðð2i � 1Þpy1=2LÞ

½ð2i � 1Þ2 � ð2j � 1Þ2�ðpc=2LÞ2
. ð31Þ

Expanding sine terms in series for small value of ð2j � 1Þpy1=2L and ð2i � 1Þpy1=2L, and ignoring higher order
terms, one can write

ĉðiÞj ¼ �
ð2j � 1Þð2i � 1Þðby1=cÞ2

ð2i � 1Þ2 � ð2j � 1Þ2
. (32)

Observation 1: From Eq. (30), one can observe that starting from i ¼ 1, as i increases, jeij reduces. This
implies that due to yielding of any member in the bottom story, absolute percentage change in eigenvalues of a
lower mode is significantly greater than that of a higher mode.

Observation 2: From Eq. (32) and keeping in mind that ĉðiÞi ¼ 1, one can say that for a given i, ðiX1Þ, as

ji � jj increases, j½ð2j � 1Þð2i � 1Þ�=½ð2i � 1Þ2 � ð2j � 1Þ2�j reduces and thus jĉðiÞj j reduces. This implies that the

coupling between pre-yield (linear) and post-yield modal matrices reduces with the separation of modes. In
other words, any lower linear mode (say the fundamental mode) will still be approximately orthogonal with
any higher instantaneous modes (say the fifth mode) of post-yield structure.

3.2. Case 2: yielding of a member of the top story

Let us consider that the yielding occurs in a member of the top story (i.e., farthest from building’s base). Let
the reduction in stiffness of this member be dkn, where 0odo1. Therefore, one can observe that both the
ðn� 1; n� 1Þth and ðn; nÞth terms of ½Dk� are equal to �dkn, and both the ðn� 1; nÞth and ðn; n� 1Þth terms of
½Dk� are equal to dkn. Thus, after simplification, one can write,

Aði; jÞ ¼ �dknðf
ðiÞ
n � fðiÞn�1Þðf

ðjÞ
n � fðjÞn�1Þ; i; j ¼ 1; 2; . . . ; n. (33)

Therefore, l̂i can be expressed as

l̂i ¼ li 1�
dknðf

ðiÞ
n � fðiÞn�1Þ

2

li

 !
; i ¼ 1; 2; . . . ; n. (34)
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Now, from the eigenvalue problem of the linear system, one can write

knðf
ðiÞ
n � fðiÞn�1Þ ¼ limnf

ðiÞ
n ; i ¼ 1; 2; . . . ; n. (35)

Using Eq. (35) in Eq. (34), one can express l̂i as

l̂i ¼ li 1�
dðmnf

ðiÞ
n Þ

2

kn

li

 !
; i ¼ 1; 2; . . . ; n. (36)

Replacing ei with ðl̂i � liÞ=li, Eq. (36) can be written as

ei ¼ �lid
m2

nðf
ðiÞ
n Þ

2

kn

; i ¼ 1; 2; . . . ; n. (37)

Substituting fðiÞn with b sinðð2i � 1Þpyn=2LÞ and li with ½ð2i � 1Þpc=2L�2, one can write

ei ¼ �
b2dm2

n

kn

ð2i � 1Þ
pc

2L

� �2
sin ð2i � 1Þ

pyn

2L

� �h i2
; i ¼ 1; 2; . . . ; n. (38)

For a large value of n, yn ! L and thus, Eq. (38) can be approximated as

ei ¼ �
b2dm2

n

kn

ð2i � 1Þpc

2L

� �2

; i ¼ 1; 2; . . . ; n. (39)

Similarly, on using Eq. (35) in Eq. (33) and then substituting the result in Eq. (21), one can express ĉðiÞj as

ĉðiÞj ¼ �
dfðjÞn fðiÞn liljm

2
n

ðli � ljÞkn

; iaj; i; j ¼ 1; 2; . . . ; n. (40)

Replacing fðiÞn , fðjÞn li and lj with those obtained by Eqs. (24)–(25), and then approximating yn as L and
simplifying, one can write

ĉðiÞj ¼ �
dm2

nb2

kn

ð2i � 1Þð2j � 1Þpc=2L
	 
2
ð2i � 1Þ2 � ð2j � 1Þ2

; iaj; i; j ¼ 1; 2; . . . ; n. (41)

Observation 3: From Eq. (39), it can be observed that as i increases starting from i ¼ 1, jeij also increases.
This implies that due to yielding of any member in the top story, absolute percentage change in eigenvalues of
a lower mode will be less than that of a higher mode.

Observation 4: For a given i, (iX1), as ji � jj increases, j½ð2j � 1Þð2i � 1Þ�2=ð2i � 1Þ2 � ð2j � 1Þ2j reduces and
thus jĉðiÞj j reduces. This implies that the coupling between the initial linear and post-yield modal matrices
reduces with the separation of modes, i.e., any two well-separated modes (one from the linear and the other
from the post-yield range of behavior) still remain approximately orthonormal with respect to the mass
matrix.

3.3. Case 3: yielding occurs in a member of the pth story

Let the reduction in stiffness due to yielding of any member of the pth story from the base of the building
be dkp, where 0odo1. Therefore, both the ðp� 1; p� 1Þth and ðp; pÞth terms of ½Dk� become �dkp, and

both the ðp� 1; pÞth and ðp; p� 1Þth terms of ½Dk� become dkp. Thus, one can express A1ði; jÞ ¼

�ðfðp�1Þi � fðpÞi Þðf
ðp�1Þ
j � fðpÞj Þdkp. Therefore, l̂i becomes

l̂i ¼ li 1� ðfðp�1Þi � fðpÞi Þ
2 dkp

li

� �
; i ¼ 1; 2; . . . ; n. (42)

Replacing ðl̂i � liÞ=li with ei, Eq. (42) can be expressed as

ei ¼ �ðf
ðp�1Þ
i � fðpÞi Þ

2 dkp

li

; i ¼ 1; 2; . . . ; n. (43)
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Substituting fðpÞi , fðp�1Þi and li with b sinðð2i � 1Þpyp=2LÞ, b sinðð2i � 1Þðpyp�1Þ=2LÞ and ð2i � 1Þpc=2L,
respectively, and then by simplifying for i ¼ 1; 2; . . . ; n, one can write

ei ¼ � 4b2 sin ð2i � 1Þðyp�1 � ypÞ
p
4L

h i
cos ð2i � 1Þðyp�1 þ ypÞ

p
4L

h i� �2
�

dkp

½ð2i � 1Þpc=2L�2
. ð44Þ

For yp�1 � yp ¼ �e, with e being very small for large value of n, Eq. (44) can be approximated as

ei ¼ �b2dkp

e
c

� �2
cos2 ð2i � 1Þ

pyp

2L

h i
; i ¼ 1; 2; . . . ; n. (45)

jeij will be maximum when cos2ðð2i � 1Þpyp=2LÞ will be maximum, i.e., when ð2i � 1Þ ¼ 2L=yp or mode shape,
b sinðð2i � 1Þpyp=2LÞ ¼ 0. In the same way, jeij will be minimum when b sinðð2i � 1Þpyp=2LÞ ¼ 0.

Now,

ĉðiÞj ¼ �
ðfðp�1Þi � fðpÞi Þðf

ðp�1Þ
j � fðpÞj Þdkp

li � lj

; iaj; i; j ¼ 1; 2; . . . ; n. (46)

Substituting mode shapes and eigenvectors of Eq. (46) and simplifying, for i; j ¼ 1; 2; . . . ; n and iaj, one can
write

ĉðiÞj ¼
ð2i � 1Þð2j � 1Þ cosðð2i � 1Þpyp=LÞ cosðð2j � 1Þpyp=LÞ

ð2j � 1Þ2 � ð2i � 1Þ2
2be
c

� �2

dkp. (47)

Observation 5: From Eq. (45) and subsequent discussion, one can notice that for the ith mode shape, if yp is
such that the value of this mode shape at the pth dof is close to zero then, jeij will be maximum for the ith
mode. For any other mode, say jth mode, jejj will be less compared to jeij. The value of jejj reduces as the value
of mode shape at the pth dof increases compared to that of the ith mode.

Observation 6: From Eq. (47), it can be observed that for a given i, as ji � jj increases, jĉðiÞj j reduces.
It may be mentioned here that although the results of all three cases discussed here are based on a slight

change in stiffness due to the nonlinear behavior of the assumed building, these results give a good insight into
the problem under consideration. However, for a large change in stiffness, it may be necessary to consider a
higher order expansion and better approximations to obtain better results.

4. Numerical illustration

In order to investigate the trend in change of eigenproperties obtained from the perturbation formulation,
which is derived based on the approximation of building behavior as that of a shear building with large
number of dofs and a small change in stiffness, a 4 dof shear building is considered (see Fig. 1 and consider
n ¼ 4). For this system, the inter-story stiffness properties and mass distribution along the height of the
building are considered to be uniform, i.e., k1 ¼ k2 ¼ k3 ¼ k4 ¼ 2:04� 108 N=m and m1 ¼ m2 ¼

m3 ¼ m4 ¼ 1:0� 105 kg. For this building, two different cases of stiffness reduction due to yielding (Cases
1 and 2), are considered. A 25% reduction in the instantaneous stiffness of the bottom story is assumed for
Case 1 and the same percentage reduction of instantaneous stiffness in the top story is considered for Case 2.

Table 1 shows the eigenvalues of the four-story shear building in initial linear and the post-yield ranges,
along with the percentage change in eigenvalues for all three cases, ei (%), i ¼ 1; 2; . . . ; n. These values are
obtained by solving the associated eigenvalue problems and not using the expressions obtained from the
perturbation formulation. Note that the value of ei is negative for all values of i implying a reduction in
eigenvalues due to the yielding considered in Case 1 and Case 2. It can be observed from this table that starting
from the fundamental mode, as the mode number increases, the absolute value of percentage change in
eigenvalues reduces for Case 1 and increases for Case 2. However, for Case 2, this absolute percentage change
in eigenvalues increases with the increase in mode number for the first three modes but not for the fourth
mode. This is due to the fact that in the analytical derivation, the frequencies and mode shapes of a lumped-
mass shear building is approximated as that of an equivalent uniform shear beam. It has been found that this
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Table 2

Element of matrix ½ĉ� ¼ ½f�T½m�½f̂� of the four-story shear building for different yielding scenarios

inj Case 1: 25% stiffness reduction of bottom story Case 2: 25% stiffness reduction of top story

1 2 3 4 1 2 3 4

1 0.9988 0.0450 �0.0169 0.0064 0.9998 �0.0191 �0.0103 �0.0038

2 �0.0435 0.9961 0.0731 �0.0219 0.0174 0.9899 �0.1358 �0.0375

3 0.0197 �0.0711 0.9958 0.0542 0.0120 0.1287 0.9804 �0.1485

4 �0.0084 0.0254 �0.0524 0.9983 0.0063 0.0568 0.1421 0.9882

Table 1

Eigenvalues of the four-story shear building in initial linear range and different post-yield ranges

Mode no. Linear Case 1: 25% stiffness reduction of bottom story Case 2: 25% stiffness reduction of top story

i li ðHz2Þ l̂i ðHz2Þ ei (%) l̂i ðHz2Þ ei (%)

1 6.23 5.44 �12.75 6.12 �1.75

2 51.67 47.01 �9.02 46.06 �10.87

3 121.29 115.93 �4.42 107.76 �11.16

4 182.52 180.42 �1.15 175.94 �3.60
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approximation of uniform beam for lumped-mass model leads to significant error in the eigenproperties of
higher modes. This is in fact evident by computing mode shapes of this building, where one can observe that
the value corresponding to the dof 4 of the third and fourth mode shapes are significantly lower than the same
values for the first and second mode which are approximately equal. Note that for a uniform shear beam these
values should be same as fðiÞn ¼ b for yn ¼ L and i ¼ 1; 2; . . . ; n from Eq. (25). Nonetheless, keeping in mind
that only the first few modes are significant in the seismic response of a building, one can conclude that the
trend predicted through the analytical formulation of Case 2 compares well with the numerical results.

Table 2 shows the coupling matrix ½ĉ� ¼ ½f�T½m�½f̂�. This coefficient matrix actually shows the strength of
the modal coupling terms between the mode shapes of the linear and post-yield ranges. It may be observed
that the leading diagonal terms are close to unity. For any column, the value of any term reduces as it goes
further away from the leading diagonal term in that column. This means that the coupling of a linear range
mode with any post-yield mode is less as the spacing between the linear and the post-yield modes becomes
wider. From Tables 1 and 2, one can conclude that the trend obtained by perturbation approach are well
applicable even for this four-story shear building.

Now, in order to see how this trend works for short to medium height steel moment-resisting frame
buildings, for which the dynamic behavior can be considered to be close to that of an equivalent shear
building, two steel moment-resisting frame (SMRF) buildings with four and eight stories are considered. These
buildings were previously considered by Santa-Ana and Miranda [23] and were designed using the lateral load
distribution specified in the Uniform Building Code, Structural Engineering Design Provisions [25]. The
fundamental periods of vibration for these two buildings are representative of those obtained from earthquake
records of instrumented existing SMRFs. The buildings have a uniform mass distribution over their height
and a non-uniform lateral stiffness distribution. Fig. 2 shows the representative exterior frames of each of the
two buildings. The buildings were designed according to strong-column weak-beam criteria of capacity design,
i.e., excluding the beam-to-column connections in the top floor, the sum of the plastic moments of the columns
framing into each beam–column joint is higher than the sum of plastic moments of the beams framing into the
same joint. Lumped mass numerical models of these frames are developed using OpenSees [24], a open source
finite element software framework to simulate the performance of structural and geotechnical systems
subjected to earthquakes. It is assumed that the buildings are fixed at their base and transverse vibration is
considered.
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Table 3

Change in eigenvalues of the four-story frame for different yielding scenarios

Mode no. Linear Case 1: plastic hinges at the

base of middle two columns

Case 2: plastic hinges at middle

beam of roof

Case 3: plastic hinges at middle

beam of fourth floor

i li ðHz2Þ l̂i ðHz2Þ ei (%) l̂i ðHz2Þ ei (%) l̂i ðHz2Þ ei (%)

1 0.63 0.42 �32.88 0.63 �0.61 0.62 �2.27

2 6.34 5.44 �14.18 6.08 �4.13 5.77 �9.00

3 22.93 21.77 �5.08 21.73 �5.23 22.01 �4.04

4 48.38 47.36 �2.11 47.74 �1.32 47.74 �1.33

4 Story Frame

8 Story Frame

Fig. 2. Two-dimensional frames of the four- and eight-story steel moment-resisting frame buildings considered in this study.
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For the four-story frame, three cases of yielding scenarios are considered. They are (i) Case 1: formation of
plastic hinges at the base of middle two columns (bottom of interior columns of the first story), (ii) Case 2:
formation of plastic hinge at two ends of the middle beam of roof, and (iii) Case 3: formation of plastic hinge
at two ends of the middle beam of the fourth floor (dof 3). Table 3 shows the percentage change in eigenvalues
in all three cases. It can be observed from this table that as the mode number increases, jeij reduces for Case 1
and increases for Case 2. However, similar to the Case 2 of the four-story shear building, this trend does not
follow for the fourth mode due to the same reason of mode shapes approximation as discussed for the four-
story shear building. For Case 3, jeij becomes maximum for i ¼ 2 and reduces for any mode with the increase
in separation of that mode with respect to the second mode.

The trend found in Case 3 can be explained by observing the mode shapes of this building as given in Fig. 3,
in conjunction with Observation 5. It can be observed from Fig. 3 that the second mode forms a node near the
third dof (fourth floor) and thus jeij is maximum for the second mode and reduces for any mode on either side
of this mode.

Fig. 4(a) and (b) shows eight mode shapes of the eight-story frame. Note in this figure that the second mode
and the fifth mode form node near the seventh floor (dof 6). Similar to the four-story frame, for the eight-story
frame three cases of yielding scenarios are considered. They are (i) Case 1: formation of plastic hinge at the
base of middle two columns, (ii) Case 2: formation of plastic hinge at two ends of the middle beam of roof, and
(iii) Case 3: formation of plastic hinge at two ends of the middle beam of the seventh floor.
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Fig. 3. Orthonormal mode shapes of the four-story steel moment-resisting frame. ——– 1st mode, – – – – 2nd mode, � � � � � � 3rd mode,

— � � — 4th mode.

Fig. 4. Orthonormal mode shapes of the eight-story steel moment-resisting frame, (a) first mode to fourth mode: ——– 1st mode,

– – – – 2nd mode, � � � � � � 3rd mode, — � �— 4th mode, (b) fifth mode to eighth mode: ——– 5th mode, – – – – 6th mode, � � � � � � 7th mode,

— � � — 8th mode.

S. Ray Chaudhuri / Journal of Sound and Vibration 312 (2008) 754–768 765
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Fig. 5. Percentage change in eigenvalues of the eight-story steel moment-resisting frame for different yielding scenarios. ——– Case 1:

plastic hinges at the base of middle two columns, – – – – Case 2: plastic hinges at two ends of middle beam of roof, � � � � � � Case 3: plastic

hinges at two ends of middle beam of 7th floor.
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Fig. 5 shows the percentage change in eigenvalues with mode number in all three cases. It can be observed
from this figure that as the mode number increases, jeij reduces for Case 1 and increases for Case 2 until the
fifth mode after which jeij starts to decrease. For Case 3, jeij reaches local maxima for the second mode and the
fifth mode. Also, note that for Case 3, jeij is greater for the second mode than that of the fifth mode.
5. Conclusions

In this paper, a perturbation approach is adopted to obtain an insight into the pattern of change in the
instantaneous eigenproperties of a building as a result of reduction in stiffness due to yielding of its different
members. For this purpose, analytical approximate relationships between the initial linear range (pre-yield)
and post-yield eigenproperties have been established. A numerical study with a four-story shear building and
two steel moment-resisting frame buildings (one four-story and the other eight-story) shows that the trends of
change in eigenproperties obtained from the analytical study are in good agreement with the numerical study
for all the cases of yielding scenarios considered herein. The summary of the trends as obtained for a building
are as follows:
(1)
 A change in stiffness of the bottom story due to yielding will cause a greater percentage change of the
eigenvalues in its lower modes than that of its higher modes.
(2)
 In contrast to above conclusion, for a change in stiffness of the top story, the percentage change in
eigenvalues increases with the increase in mode number starting from the fundamental mode. This trend is
found to be valid until the first few modes.
(3)
 In addition, if yielding occurs in such a location of a building that for a mode its mode shape value is close
to zero at that location, the mode will have maximum percentage change in its eigenvalue. On the other
hand, if yielding occurs in such a location that for a mode, its mode shape value is close to unity at that
location, the mode will have minimum percentage change in its eigenvalue. If the above-mentioned
condition of mode shape value close to zero is satisfied for multiple modes, the percentage change in
eigenvalues will have the local maxima for those modes, with the global maximum occurring in the lowest
mode satisfying this condition.
(4)
 Also, in all above cases, the coupling between a initial linear mode and a post-yield instantaneous mode
with respect to the mass matrix reduces with an increase in the spacing between the two modes. This
implies that any mode of linear range will still be approximately orthogonal with a post-yield
instantaneous mode where the post-yield mode is well separated from the linear mode.
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The outcome of this study is based on the first-order perturbation approach and the logical assumptions for
shear buildings. Since the vibration characteristics of a short to medium height frame building is close to that
of a shear building, the trends of change in eigenproperties predicted through the analytical study are found to
be applicable for short to medium height frame buildings too. For very tall buildings, these results may not be
applicable as the dynamic behavior of a tall building is more close to bending type than that of shear type and
thus predominantly different from that of the shear buildings as considered here.
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